трусики женские украина

На головну

Оптимізація економічних показників - Экономико-математическое моделирование

Завдання 1

Побудувати математичну модель задачі.

Фірма, що спеціалізується на виробництві електроприладів, отримала замовлення на виготовлення 100 електроплит. Конструкторами запропоновано до випуску три моделі плит А, В і С за ціною відповідно 100, 60 та 50 грн.од. Норми витрат сировини для виготовлення однієї електроплити різних моделей та запас сировини на фірмі наведено в таблиці.

Сировина Норми витрат сировини, грн.од. Запас сировини, грн.од.
А В С
І 10 4 5 700
ІІ 3 2 1 400
Ціна, грн.од. 100 60 50

Визначити оптимальні обсяги виробництва електроплит різних моделей, що максимізують дохід фірми.

Розв'язок

Складаємо математичну модель задачі. Позначимо через х1 кількість електроплит 1-ї моделі, що виготовляє фірма за деяким планом, а через х2 кількість електроплит 2-ї моделі та через та через х3 кількість виробів 3-ї моделі Тоді прибуток, отриманий фірмою від реалізації цих електроплит, складає

∫ = 100х1 + 60х2+ 50х3.

Витрати сировини на виготовлення такої кількості виробів складають відповідно:

А =10х1 + 4х2 + 5х3,

В =3х1 + 2х2 + 1х3,

Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:

10х1 + 4х2 + 5х3 ≤ 700

3х1 + 2х2 + 1х3 ≤ 400

Оскільки, кількість виробів є величина невід'ємна, то додатково повинні виконуватись ще нерівності: х1> 0, х2> 0, х3> 0.

Таким чином, приходимо до математичної моделі (задачі лінійного програмування):

Знайти х1 , х2, х3 такі, що функція ∫ = 100х1 + 60х2 + 50х3 досягає максимуму при системі обмежень:

Розв'язуємо задачу лінійного програмування симплексним методом. Введемо балансні змінні х4 ≥ 0, х5 ≥ 0. Їх величина поки що невідома, але така, що перетворює відповідну нерівність у точну рівність. Після цього, задача лінійного програмування набуде вигляду: ∫ = 100х1 + 60х2 + 50х3 → max при обмеженнях

де х1,...,х5>0

Оскільки завдання вирішується на максимум, то ведучий стовпець вибирають по максимальному негативному кількістю та індексного рядку. Всі перетворення проводять до тих пір, поки не вийдуть в індексному рядку позитивні елементи.

Складаємо симплекс-таблицю:

Базис x1 х2 x3 x4 x5 b
I II III IV V VI VII
а 0 10 4 5 1 0 700
б 0 3 2 1 0 1 400
d Індексний рядок, ∆i 100 60 50 0 0 0

Складаємо перший план. Оскільки змінних х4,х5в цільовій функції немає, то їм відповідають коефіцієнти 0;

План Базис В x1 x2 x3 x4 x5 min
1 x4 700 10 4 5 1 0 70
x5 400 3 2 1 0 1 133.33
Індексний рядок F(X1) 0 -100
Косметологія
Короткий зміст творів
Криміналістика
Кримінологія
Криптологія
Кулінарія
Культура і мистецтво
Культурологія
Логіка
Логістика
Маркетинг
Математика
Медицина, здоров'я
Медичні науки
Менеджмент
Металургія
Музика
Наука і техніка
Нарисна геометрія
Фільми онлайн
Педагогіка
Підприємництво
Промисловість, виробництво
Психологія
Психологія, педагогіка
Радіоелектроніка
Реклама
Релігія і міфологія
Риторика
Різне
Сексологія
Соціологія
Статистика
Страхування
Будівельні науки
Будівництво
Схемотехніка
Теорія організації
Теплотехніка
Технологія
Товарознавство
Транспорт
Туризм
Управління
Керуючі науки
Фізика
Фізкультура і спорт
Філософія
Фінансові науки
Фінанси
Фотографія
Хімія
Цифрові пристрої
Екологія
Економіка
Економіко-математичне моделювання
Економічна географія
Економічна теорія
Етика

8ref.com

© 8ref.com - українські реферати


енциклопедія  бефстроганов  рагу  оселедець  солянка