трусики женские украина

На головну

Математичне програмування - Экономико-математическое моделирование

Завдання 1

Побудувати математичну модель задачі.

Меблева фабрика виготовляє столи, стільці, тумби і книжкові шафи використовуючи дошки двох видів, причому фабрика має 500 м2дошок першого виду і 1000 м2дошок другого виду. Задані також трудові ресурси в кількості 800 людино-годин. У таблиці наведені нормативи витрат кожного виду ресурсів на виготовлення одного виду і прибуток від реалізації одиниці виробу.

Ресурси Витрати на один виріб Запас сировини, м2
Столи Стільці Тумби Книжкові шафи
Дошки І виду, м2 5 1 9 12 500
Дошки ІІ виду, м2 2 3 4 1 1000
Трудові ресурси, люд.год. 3 2 5 10 800
Прибуток від реалізації одного виробу, грн.од. 12 5 15 10

Визначити асортимент, що максимізує прибуток.

Розв'язок

Складаємо математичну модель задачі. Позначимо через х1кількість виробів 1-ї моделі, що виготовляє фірма за деяким планом, а через х2 кількість виробів 2-ї моделі та через та через х3і х4кількість виробів 3-ї і 4-ї моделі відповідно. Тоді прибуток, отриманий фабрикою від реалізації цих виробів, складає

∫ = 12х1+5х2 + 15х3+ 10х4.

Витрати сировини на виготовлення такої кількості виробів складають відповідно:

А =5х1+1х2 + 9х3+ 12х4,

В =2х1+3х2 + 4х3+ 1х4,

С =3х1+2х2 + 5х3+ 10х4,

Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:

5х1+1х2 + 9х3+ 12х4≤ 500

2х1+3х2 + 4х3+ 1х4≤ 1000

3х1+2х2 + 5х3+ 10х4≤ 800

Оскільки, кількість виробів є величина невід'ємна, то додатково повинні виконуватись ще нерівності: х1> 0, х2> 0, х3> 0, х4> 0.

Таким чином, приходимо до математичної моделі (задачі лінійного програмування):

Знайти х1 , х2, х3 та х4 такі, що функція ∫ = 12х1+5х2 + 15х3+ 10х4 досягає максимуму при системі обмежень:

Розв'язуємо задачу лінійного програмування симплексним методом. Введемо балансні змінні х5 ≥ 0, х6≥ 0, х7≥ 0. Їх величина поки що невідома, але така, що перетворює відповідну нерівність у точну рівність. Після цього, задача лінійного програмування набуде вигляду: ∫ = 12х1+5х2 + 15х3+ 10х4 → max при обмеженнях

де х1,...,х7>0

Оскільки завдання вирішується на максимум, то ведучий стовпець вибирають по максимальному негативному кількістю та індексного рядку. Всі перетворення проводять до тих пір, поки не вийдуть в індексному рядку позитивні елементи.

Переходимо до основного алгоритму симплекс-методу.

План Базис В x1 x2 x3 x4 x5 x6 x7 min
1 x5 500 5 1 9 12 1 0 0 55.56
x6 1000 2 3 4 1 0 1 0 250
x7 800 3 2 5 10 0 0 1 160
Індексний рядок F(X1) 0 -12 -5 -15 -10 0 0 0 0

Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х3, оскільки значення коефіцієнта за модулем найбільше.

План Базис В x1 x2 x3 x4 x5 Повний текст реферату

Авіація і космонавтика
Автоматизація та управління
Архітектура
Астрологія
Астрономія
Банківська справа
Безпека життєдіяльності
Біографії
Біологія
Біологія і хімія
Біржова справа
Ботаніка та сільське господарство
Валютні відносини
Ветеринарія
Військова кафедра
Географія
Геодезія
Геологія
Діловодство
Гроші та кредит
Природознавство
Журналістика
Зарубіжна література
Зоологія
Видавнича справа та поліграфія
Інвестиції
Інформатика
Історія
Історія техніки
Комунікації і зв'язок
Косметологія
Короткий зміст творів
Криміналістика
Кримінологія
Криптологія
Кулінарія
Культура і мистецтво
Культурологія
Логіка
Логістика
Маркетинг
Математика
Медицина, здоров'я
Медичні науки
Менеджмент
Металургія
Музика
Наука і техніка
Нарисна геометрія
Фільми онлайн
Педагогіка
Підприємництво
Промисловість, виробництво
Психологія
Психологія, педагогіка
Радіоелектроніка
Реклама
Релігія і міфологія
Риторика
Різне
Сексологія
Соціологія
Статистика
Страхування
Будівельні науки
Будівництво
Схемотехніка
Теорія організації
Теплотехніка
Технологія
Товарознавство
Транспорт
Туризм
Управління
Керуючі науки
Фізика
Фізкультура і спорт
Філософія
Фінансові науки
Фінанси
Фотографія
Хімія
Цифрові пристрої
Екологія
Економіка
Економіко-математичне моделювання
Економічна географія
Економічна теорія
Етика

8ref.com

© 8ref.com - українські реферати


енциклопедія  бефстроганов  рагу  оселедець  солянка